Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2307.01157v1

ABSTRACT

This paper proposes a novel approach to predict epidemiological parameters by integrating new real-time signals from various sources of information, such as novel social media-based population density maps and Air Quality data. We implement an ensemble of Convolutional Neural Networks (CNN) models using various data sources and fusion methodology to build robust predictions and simulate several dynamic parameters that could improve the decision-making process for policymakers. Additionally, we used data assimilation to estimate the state of our system from fused CNN predictions. The combination of meteorological signals and social media-based population density maps improved the performance and flexibility of our prediction of the COVID-19 outbreak in London. While the proposed approach outperforms standard models, such as compartmental models traditionally used in disease forecasting (SEIR), generating robust and consistent predictions allows us to increase the stability of our model while increasing its accuracy.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.11.21253356

ABSTRACT

Vaccination strategy is crucial in fighting against the COVID-19 pandemic. Since the supply is limited, contact network-based interventions can be most powerful to set an optimal strategy by identifying high-risk individuals or communities. However, due to the high dimension, only partial and noisy network information can be available in practice, especially for dynamical systems where the contact networks are highly time-variant. Furthermore, numerous mutations of SARS-CoV-2 impact considerably the current infectious probability, requiring real-time network updating algorithms. In this study, we propose a sequential network updating approach based on data assimilation techniques to combine different sources of temporal information. We then prioritise the individuals with high-degree or high-centrality, obtained from the assimilated networks, for vaccination. The assimilation-based approach is compared with the standard method (based on partially observed networks) and a random selection strategy in terms of vaccination effectiveness in a SIR model. The numerical comparison is first carried out using real-world face-to-face dynamical networks collected in a high school, following by sequential multi-layer networks, generated relying on the Barabasi-Albert model emulating the department of Computing at Imperial College London in the UK as an example.


Subject(s)
COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.00485v3

ABSTRACT

Vaccination strategy is crucial in fighting against the COVID-19 pandemic. Since the supply is limited, contact network-based interventions can be most powerful to set an optimal strategy by identifying high-risk individuals or communities. However, due to the high dimension, only partial and noisy network information can be available in practice, especially for dynamical systems where the contact networks are highly time-variant. Furthermore, numerous mutations of SARS-CoV-2 impact considerably the current infectious probability, requiring real-time network updating algorithms. In this study, we propose a sequential network updating approach based on data assimilation techniques to combine different sources of temporal information. We then prioritise the individuals with high-degree or high-centrality, obtained from the assimilated networks, for vaccination. The assimilation-based approach is compared with the standard method (based on partially observed networks) and a random selection strategy in terms of vaccination effectiveness in a SIR model. The numerical comparison is first carried out using real-world face-to-face dynamical networks collected in a high school, following by sequential multi-layer networks, generated relying on the Barabasi-Albert model emulating the department of Computing at Imperial College London in the UK as an example.


Subject(s)
COVID-19
4.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2102.02664v2

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) has now spread throughout the globe infecting over 150 million people and causing the death of over 3.2 million people. Thus, there is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread. While epidemiological models can be computationally expensive, recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs. Here we introduce two digital twins of a SEIRS model applied to an idealised town. The SEIRS model has been modified to take account of spatial variation and, where possible, the model parameters are based on official virus spreading data from the UK. We compare predictions from a data-corrected Bidirectional Long Short-Term Memory network and a predictive Generative Adversarial Network. The predictions given by these two frameworks are accurate when compared to the original SEIRS model data. Additionally, these frameworks are data-agnostic and could be applied to towns, idealised or real, in the UK or in other countries. Also, more compartments could be included in the SEIRS model, in order to study more realistic epidemiological behaviour.


Subject(s)
COVID-19
5.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.12177v2

ABSTRACT

Epidemic models play a key role in understanding and responding to the emerging COVID-19 pandemic. Widely used compartmental models are static and are of limited use to evaluate intervention strategies with the emerging pandemic. Applying the technology of data assimilation, we propose a Bayesian updating approach for estimating epidemiological parameters using observable information for the purpose of assessing the impacts of different intervention strategies. We adopt a concise renewal model and propose new parameters by disentangling the reduction of instantaneous reproduction number Rt into mitigation and suppression factors for quantifying intervention impacts at a finer granularity. Then we developed a data assimilation framework for estimating these parameters including constructing an observation function and developing a Bayesian updating scheme. A statistical analysis framework is then built to quantify the impact of intervention strategies by monitoring the evolution of these estimated parameters. By Investigating the impacts of intervention measures of European countries, the United States and Wuhan with the framework, we reveal the effects of interventions in these countries and the resurgence risk in the USA.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL